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Abstract

Solids (or structures) of elastic–plastic internal variable material models and subjected to cyclic loads are considered.

A minimum net resistant power theorem, direct consequence of the classical maximum intrinsic dissipation theorem of

plasticity theory, is envisioned which describes the material behavior by determining the plastic flow mechanism (if any)

corresponding to a given stress/hardening state. A maximum principle is provided which characterizes the optimal

initial stress/hardening state of a cyclically loaded structure as the one such that the plastic strain and kinematic internal

variable increments produced over a cycle are kinematically admissible. A steady cycle minimum principle, integrated

form of the aforementioned minimum net resistant power theorem, is provided, which characterizes the structure�s
steady state response (steady cycle) and proves to be an extension to the present context of known principles of perfect

plasticity. The optimality equations of this minimum principle are studied and two particular cases are considered: (i)

loads not exceeding the shakedown limit (so recovering known results of shakedown theory) and (ii) specimen under

uniform cyclic stress (or strain). Criteria to assess the structure�s ratchet limit loads are given. These, together with some

insensitivity features of the structure�s alternating plasticity state, provide the basis to the ratchet limit load analysis

problem, for which solution procedures are discussed.
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1. Introduction

A wide class of elastic–plastic and elastic–viscoplastic materials and structures, subjected to mechanical

and/or kinematical cyclic (i.e. periodic) loads, exhibits a long-term stabilized (or steady state) response,

which is independent of the initial conditions and has periodicity features like the applied load. Namely,

after a transient phase lasting in general a few cycles in which no periodicity features can be recognized, the

response eventually stabilizes into a steady state in which the stresses and the plastic strain rates turn out to

be periodic. In the following, the term steady cycle will be used as a shorter synonym of ‘‘long-term sta-

bilized response’’ and ‘‘steady state response’’.
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The existence of a steady cycle for materials in the mentioned class is assessed by experimental evidence

(see e.g. Lemaitre and Chaboche, 1990). For cyclically loaded structures, the existence of a steady cycle was

theoretically proved by Frederick and Armstrong (1966), who considered perfect plasticity and perfect

viscoplasticity (see also Gokhfeld and Cherniavsky, 1980; Martin, 1975), by Mr�ooz (1972) and Ainsworth
et al. (1980), who considered kinematically hardening materials, by Halphen (1979) and Polizzotto (1994a),

who considered internal variable material models. For simplicity, only time-independent plasticity will be

considered in the following.

The steady cycle of a cyclically loaded structure can be directly (i.e. without the use of step-by-step

analyses) determined, at least in principle, by means of a particular equation set. This equation set was

explicitly reported and studied by Gokhfeld and Cherniavsky (1980), Polizzotto et al. (1990) and Polizzotto

(1993a,b, 1994b) for elastic–perfectly plastic materials, by Halphen (1979) and Polizzotto (1994a) for

elastic–plastic internal-variable material models, and by Polizzotto (1995) for elastic–viscoplastic materials
with thermal cycling. The findings of these studies (where small displacements and strains are dealt with)

are hereafter summarized for subsequent use:

(a) The stresses r and the plastic strain rates _eep (with the related kinematic internal variable rates _nn) turn

out to be periodic with the same period of the applied loads.

(b) The plastic strain increment over the cycle (or plastic strain ratchet), Dep, constitutes a compatible

strain field with zero displacements on the constrained part of the boundary surface of the body.

(c) The kinematic internal variables increment over the cycle, Dn, turns out to vanish identically every-
where in the body.

(d) The steady state solution, that is, the solution to the mentioned set of governing equations, is unique for

all, except for a time-independent residual stress field within the elastic region Ve (if any), where the

yield limit in not attained in the steady state.

The steady cycle of a cyclically loaded structure can be categorized as follows:

(1) (Elastic) shakedown, in which the steady cycle is characterized by trivially vanishing plastic strain rates

in the whole body (Ve ¼ V ). This implies that plastic deformation may occur only within the transient
phase, and that the structure responds to the subsequent loads in a purely elastic manner. This is the most

desirable type of long-term response for structural safety, provided the amount of plastic deformation

produced in the transient phase is sufficiently small.

(2) Alternating plasticity collapse (or Plastic shakedown), in which the steady cycle is characterized by zero

plastic strain ratchet, Dep ¼ 0, everywhere in the body, and thus the plastic strains turn out to be periodic

like the stresses. This type of long-term response, though induces low-cycle fatigue and consequently re-

duces the working life of the structure or specimen, is sometimes taken as a convenient basis for design

purposes because of the absence of plastic strain growth.
(3) Ratchetting (or Incremental collapse), in which the steady cycle is characterized by a nonvanishing

plastic strain ratchet, Dep 6¼ 0, at least somewhere in V . This is a dangerous type of long-term response

because plastic strains grow cycle by cycle, soon becoming intolerably large.

Since in general the steady state phase covers almost the entire working life of the structure, methods for

the direct evaluation of the steady cycle constitute a research issue of interest in structural mechanics and

engineering. After the attempts of Mr�ooz (1972) for a variational characterization of the steady cycle,

Gokhfeld and Cherniavsky (1980) formulated a maximum principle for perfectly plastic materials in the

same purpose. Independently from the latter authors, Ponter and Chen (2001) formulated substantially the
same principle, but shaped it in the form of minimum principle extending the classical upper bound theo-

rem of shakedown theory to loads in excess to the shakedown limit. The essential features of the above

principles consist in introducing, as additional unknowns of the classical problem, the residual stresses

associated to the cycle plastic strains, and in imposing the plastic admissibility condition to the total
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stresses. Ponter and Chen (2001) applied their principle to evaluate the ratchet limit (see also Chen and

Ponter, 2001).

The aim of the present paper is to extend the above minimum principle to internal variable material

models with convex hardening potential (generalized standard materials, see Halphen and Nguyen, 1975;
Lemaitre and Chaboche, 1990), exhibiting hardening saturation features. For this purpose, a particular

approach is devised, which grounds on an energy principle named minimum net resistant power theorem, the

latter being a direct consequence of the classical maximum intrinsic dissipation theorem (Halphen and

Nguyen, 1975; Lemaitre and Chaboche, 1990). (For a given plastic flow mechanism, net resistant power

equals the difference between the dissipated power and the work correspondingly done by the applied

stress.) The proposed theorem proves to be a quite versatile analytical tool, since in fact it can be used not

only to evaluate the plastic flow mechanism corresponding to a given stress/hardening state of the material,

but also for other purposes: namely, (i) if cast in a suitable time integrated form, it can be used to determine
the steady cycle in a material element, or specimen, subjected to a given cyclic stress (or strain), and (ii) if

cast in a suitable time/space integrated form, it can be used to determine the steady cycle in a cyclically

loaded structure. In the latter form, the proposed theorem constitutes the desired extension, to generalized

standard materials, of the minimum principle given by Ponter and Chen (2001). The Euler–Lagrange

equations of the related minimum problem are studied in details to show that these equations actually solve

the steady cycle problem. The proposed minimum principle will be shown to incorporate ingredients both

of the kinematic shakedown theorem (i.e. the so-called kinematically admissible plastic strain cycles) and of

the static one (i.e. the statically admissible initial stress state); it thus can be interpreted as a special
combined form of the two shakedown theorems holding for loads exceeding the shakedown limit, but

which decouples into two separate shakedown statements if the applied load does not exceed the shake-

down limit.

The plan of the present paper is as follows. In Section 2 the internal variable constitutive model is in-

troduced with the related maximum intrinsic dissipation theorem. In Section 3 the minimum net resistant

power theorem is established together with its ability to determine the plastic flow mechanism (if any)

associated to a specified stress/hardening state of the material. In Section 4 the equation set governing the

steady cycle for a cyclically loaded structure is established. Section 5 is devoted to the sequence of loading
cycles, which differ from one another for the initial stress/hardening state, and provides a maximum

principle for the optimal initial conditions: a classical result can in this way be found, that is, at the

maximum, the plastic strain ratchet is self-compatible and the kinematic internal variable ratchet is iden-

tically vanishing. In Section 6 a minimum principle for the steady cycle in a cyclically loaded structure is

presented as a consequence of the minimum net resistant power theorem, and the related Euler–Lagrange

equations are studied. In Section 7 two special cases are discussed: (i) the case in which the loads do not

exceed the shakedown limit (in which case the minimum principle decouples into two pieces, one of static

nature is equivalent to the Melan theorem of shakedown theory, the other of kinematic nature is equivalent
to the Koiter theorem of the same theory), and (ii) the case of a material element (or specimen) subjected to

a given cyclic stress (or strain). In Section 8, criteria for loads at the ratchet limit are formulated for general

loads and for loads not exceeding the shakedown limit. In Section 9, the ratchet limit load problem is

discussed and a procedure for its evaluation together with its ground motivations are provided. Section 10

is devoted to the conclusions.

2. The material model

The material model considered here is a generalized standard material (Halphen and Nguyen, 1975;
Lemaitre and Chaboche, 1990), which obeys the following equations:
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_eep ¼ _kk
of
or

; � _nn ¼ _kk
of
ov

; ð1Þ

_kk P 0; _kkf ¼ 0; ð2Þ

f ¼ f ðr; vÞ6 0; ð3Þ

r ¼ D : ee; e ¼ ee þ ep þ eh; ð4Þ

v ¼ vðnÞ :¼ oWðnÞ
on

: ð5Þ

Here, r is the stress tensor, whereas e, ee, ep are total, elastic and plastic strain tensors, and eh denotes

imposed thermal-like strain tensor. D is the elastic moduli fourth-order tensor of linear elasticity (with its
usual symmetries and sign definiteness). v and n represent dual internal variables (respectively referred to as

static and kinematic); these in practice can be scalars, or vectors, or tensors––but here are formally treated

as vectors for simplicity––and are mutually related through Eq. (5), where WðnÞ is the hardening potential.

By hypothesis, this potential is convex and such that kvðnÞk is finitely bounded in the n-space, that is, the

material hardening states are confined within a saturation bounding surface (containing the origin n ¼ 0).
Finally, f ðr; vÞ is the yield function, by hypothesis convex and smooth in the ðr; vÞ-space; it also plays the

role of plastic potential (associative plasticity).

As a consequence of the convexity of f , the following inequality is known to hold:

ðr � r̂rÞ : _eep � ðv � v̂vÞ � _nnP 0; ð6Þ
where the bold dot (�) denotes scalar product between nonCartesian vectors, the pairs ðr; vÞ and ð_eep; _nnÞ are
related with each other by Eqs. (1)–(3), whereas the pair ðr̂r; v̂vÞ is arbitrary but plastically admissible, i.e.

f ðr̂r; v̂vÞ6 0. Inequality (6) is sometimes referred to as the Druckerian inequality because Drucker (1960) used

it––though in the absence of internal variables––as an assessment of material stability. It is worth noting

that the equality sign holds in (6) only if either _eep ¼ 0, _nn ¼ 0, or r ¼ r̂r, v ¼ v̂v, or both.

Inequality (6) is equivalent to the maximum intrinsic dissipation theorem, which more explicitly can be

written:

Uð_eep; _nnÞ ¼ max
r̂r;v̂v

ðr̂r : _eep � v̂v � _nnÞ s:t: f ðr̂r; v̂vÞ6 0; ð7Þ

where ð_eep; _nnÞ is an arbitrarily fixed plastic flow mechanism and ‘‘s.t.’’ stands for ‘‘subject to’’. The optimal

objective function Uð_eep; _nnÞ, having the form

Uð_eep; _nnÞ ¼ rð_eep; _nnÞ : _eep � vð_eep; _nnÞ � _nn; ð8Þ
represents the intrinsic dissipation function, which is convex and positively homogeneous of degree one in

the ð_eep; _nnÞ-space (see e.g. Martin, 1975; Kalisky, 1989; Lubliner, 1990). U of (8) is the amount of energy

density wasted as heat in the irreversible deformation process, difference between the plastic power, r : _eep,

and the energy density stored in the material micro-structure, v � _nn ¼ dW=dt. The derivatives

r ¼ oUð_eep; _nnÞ
o_eep

; v ¼ � oUð_eep; _nnÞ
o _nn

; ð9Þ

(if meaningful) provide the stress r and the static internal variable v corresponding to a given plastic

mechanism ð_eep; _nnÞ through the constitutive equations; more precisely, it is f ðr; vÞ ¼ 0 if the given plastic
mechanism is nontrivial, whereas r, v are indeterminate but plastically admissible, i.e. f ðr; vÞ6 0, if _eep ¼ 0,
_nn ¼ 0, in which case the derivatives (9) lose meaning (see e.g. Martin, 1975; Lubliner, 1990). Therefore, the
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maximum intrinsic dissipation theorem describes the material behavior by determining the stress/hardening

state corresponding, through Eqs. (1)–(3), to a given plastic flow mechanism.

3. The minimum net resistant power theorem

Assuming Uð_ee; _nnÞ of Eq. (8) known, the maximum intrinsic dissipation theorem of Eq. (7) can obviously

be expressed in the following form:

Uð_eep; _nnÞ � ðr : _eep � v � _nnÞP 0; ð10Þ

in which the pair ð_eep; _nnÞ is fixed and the pair ðr; vÞ is any plastically admissible stress/hardening state, i.e.

f ðr; vÞ6 0. (The hats have been omitted for simplicity of writing.)
However, inequality (10) can evidently be read in a different alternative form stating that (10) holds true

for all pairs ð_eep; _nnÞ and a fixed plastically admissible pair ðr; vÞ, with the equality sign for _eep ¼ 0, _nn ¼ 0, or

also for some nontrivial ð_eep; _nnÞ when f ðr; vÞ ¼ 0. With this interpretation in mind, one can realize that: if

(10) is satisfied for all pairs ð_eep; _nnÞ and for a fixed pair ðr; vÞ, then necessarily f ðr; vÞ6 0; conversely, if (10)

is violated for some ð_eep; _nnÞ, then the fixed pair ðr; vÞ cannot be plastically admissible, hence f ðr; vÞ > 0.

From this, it follows that to any given stress/hardening state, say ð�rr; �vvÞ, one can associate the scalar

quantity, here named net resistant power,

wresð_eep; _nnÞ :¼ Uð_eep; _nnÞ � ð�rr : _eep � �vv � _nnÞ; ð11Þ

a function of ð_eep; _nnÞ which, with its own sign behavior, provides a kinematic criterion to assess whether

ð�rr; �vvÞ is plastically admissible or not. wres, identified with the difference between the intrinsic dissipation

energy and the work done by the applied stress action, can be interpreted as a measure of the work density

done by the net resistant forces against the irreversible flow mechanism ð_eep; _nnÞ imposed to the material

element at both the macro- and micro-structure levels, namely

wresð_eep; _nnÞ ¼ rð_eep; _nnÞ
h

� �rr
i
: _eep � vð_eep; _nnÞ

h
� �vv

i
� _nn; ð12Þ

where rð_eep; _nnÞ ¼ oU=o_eep and vð_eep; _nnÞ ¼ �oU=o _nn, Eq. (9). Thus, the following statement can be phrased:

Statement 1. A kinematic criterion for the plastic admissibility of a given stress and hardening state of the

material, say ð�rr; �vvÞ, asserts that, if the relevant net resistant power wresð_eep; _nnÞ turns out to be nonnegative for

all plastic flow mechanisms ð_eep; _nnÞ, then ð�rr; �vvÞ is plastically admissible, i.e. f ð�rr; �vvÞ6 0; otherwise, if wres < 0

for some ð_eep; _nnÞ, then ð�rr; �vvÞ is not plastically admissible, i.e. f ð�rr; �vvÞ > 0. j

The sign behavior of wresð_eep; _nnÞ, together with its nature of being a convex one-degree positively homo-

geneous function in the ð_eep; _nnÞ-space, suggests one to consider the following minimum problem:

min
ð_eep; _nnÞ

wresð_eep; _nnÞ :¼ Uð_eep; _nnÞ � ð�rr : _eep � �vv � _nnÞ; ð13Þ

by which the plastic flow mechanism ð_eep; _nnÞ corresponding to a given stress/hardening state of the material

can be evaluated. Essentially, two typical situations can occur in relation to the latter problem, namely:

• If wresð_eep; _nnÞP 0 8ð_eep; _nnÞ, a vanishing minimum exists characterized by the Kuhn–Tucker equations:

�rr ¼ oU
o_eep

; �vv ¼ � oU

o _nn
; ð14Þ
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which means that ð�rr; �vvÞ and the optimal plastic flow mechanism ð_eep; _nnÞ are mutually related by Eqs. (1)–

(3)––but the derivatives in (14) become meaningless if the optimal flow mechanism is a trivial one, in

which case f ð�rr; �vvÞ < 0.

• If wresð_eep; _nnÞ < 0 for some mechanism, say ð_eep
; _nn
Þ, no minimum can exist since in fact, in the latter case,
wresðc_eep
; c _nn
Þ ¼ cwresð_eep
; _nn
Þ < 0 for any c > 0 and obviously wresðc_eep
; c _nn
Þ ! �1 for c ! þ1. Indeed,

no plastic mechanism can be associated to a pair ð�rr; �vvÞ violating the yield condition.

Problem (13), referred to as minimum net resistant power theorem in the following, describes the material

behavior by determining the plastic flow mechanism (if any) which corresponds, through Eqs. (1)–(3), to a

given stress/hardening state; it is the dual of the maximum intrinsic dissipation theorem. The following can

thus be stated.

Statement 2. A minimum net resistent power theorem (dual of the maximum intrinsic dissipation theorem)

holds for a material in a given stress/hardening state, say ð�rr; �vvÞ: it states that the plastic flow mechanism

ð_eep; _nnÞ related to ð�rr; �vvÞ makes the net resistant power wresð_eep; _nnÞ take on a vanishing minimum; conversely, if

wres has a vanishing minimum, the optimal pair ð_eep; _nnÞ is the plastic flow mechanism related to ð�rr; �vvÞ, and

more precisely it is a nontrivial mechanism if f ð�rr; �vvÞ ¼ 0, but a trivial one if f ð�rr; �vvÞ < 0. Otherwise, a

degenerate case occurs, that is: if no plastic flow mechanism ð_eep; _nnÞ can be associated to ð�rr; �vvÞ––because the

latter is not plastically admissible––then wresð_eep; _nnÞ has no minimum; conversely, if wresð_eep; _nnÞ has no mini-

mum, then no plastic flow mechanism can be associated to ð�rr; �vvÞ. j

In the next sections, the theorem envisioned here above will be utilized––but cast in a suitably integrated

form––to derive a minimum principle that characterizes the steady cycle in a solid subjected to a given cyclic

load.

4. The steady cycle problem for elastic–plastic structures

A solid body, or structure, composed of elastic–plastic material like that described in Section 2, being in its
initial undeformed state, occupies a region V of the three-dimensional Euclidean space and is there referred

to a Cartesian orthogonal co-ordinate system x ¼ ðx1; x2; x3Þ. It is loaded by time periodic quasi-static ex-

ternal actions such as body forces in V , surface forces on a part, say ST, of its boundary surface S ¼ oV ,

imposed displacements on the complementary part of S, say SD ¼ S n ST, and imposed strains (e.g. thermal

strains) in V . All these actions are here represented by the corresponding elastic stresses, rEðx; tÞ, and dis-

placements uEðx; tÞ, that would arise in the structure on considering the material purely elastic. Obviously,

these rE and uE are periodic in time with the same period Dt of the loads. By hypothesis, the infinitesimal

displacement theory is applicable and temperature variations (if any) do not affect the material data.
Let u, e, ep, r, n, v describe the actual elastic–plastic response of the structure to the given loads. The

infinite-duration loading process consists in a sequence of equal loading cycles, all of finite duration Dt, in

each of which the structure is equally loaded, but has different initial conditions dictated by the plastic

strains and consequent hardening state existing in the structure at the end of the previous cycle. In the

generic loading cycle, one can write:

rðx; tÞ ¼ rEðx; tÞ þ qðxÞ þ rrcðx; tÞ; ð15Þ

vðx; tÞ ¼ qðxÞ þ vcðx; tÞ; ð16Þ

where t denotes the cycle time, 06 t6Dt, rrc and vc are increments of residual stresses and static internal
variables produced in the course of the considered loading cycle, whereas q and q are the residual stresses
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and static internal variables at the beginning of the cycle (t ¼ 0), where both rrc and vc are identically

vanishing. As far as Drrc :¼ rrcðx;DtÞ and Dvc :¼ vcðx;DtÞ are nonvanishing, the subsequent loading cycle

will start with q0 ¼ q þ Drrc and q0 ¼ qþ Dvc being the new updated initial conditions. The stabilized res-

ponse phase will start with the first loading cycle of the cycle sequence at which Drrc and Dvc vanish
identically to let all the subsequent cycles have equal initial conditions and thus display equal deformation

processes. It follows that, in the steady state, the cycle plastic strain increment (or plastic strain ratchet),

Dep,––of which Drrc is the elastic stress response––must be a compatible strain field with zero residual

displacements on SD, whereas the analogous quantity Dnc––which induces, through the hardening law, the

increment Dvc ¼ Dv––must be identically vanishing.

The equations governing the deformation process in a generic loading cycle of the transient phase can be

written as follows:

_eep ¼ _kk
of
or

; � _nn ¼ _kk
of
ov

in V � ð0;DtÞ; ð17Þ

_kkP 0; _kkf ¼ 0 in V � ð0;DtÞ; ð18Þ

f ¼ f ðrE þ q þ rrc; qþ vcÞ6 0 in V � ð0;DtÞ; ð19Þ

rrc ¼ rrcðepÞ :¼
Z
V
Z : ep dV 0 in V � ð0;DtÞ; ð20Þ

vc ¼ vcðncÞ :¼ oWcðncÞ
onc in V � ð0;DtÞ; ð21Þ

where r and v are defined by (15) and (16), and ep, nc are identically vanishing at t ¼ 0. Moreover,

Z ¼ Zðx; x0Þ is the relevant influence tensor-valued two-point Green function giving the stress in x due to a

unit strain applied at x0 in the elastic body, and known to be symmetric negative semidefinite; namely, in

(20), where dV 0 ¼ dV ðx0Þ, rrc vanishes identically if ep is a nontrivial self-compatible field. Also, WcðncÞ of

(21) is the (convex) function

WcðncÞ :¼ Wðpþ ncÞ � q � nc; ð22Þ

where p is related to q by (5), i.e. q ¼ vðpÞ, and n ¼ pþ nc, such that Eq. (21) can be recognized to be

equivalent to (5); moreover, by the convexity of Wc, one can write:

WcðncÞP Wcð0Þ ¼ WðpÞ 8ðp; ncÞ: ð23Þ

It can be verified that Eqs. (15)–(21) can be uniquely solved (for instance by step-by-step integration),

provided that the fields q and q, specifying the initial stress/hardening state, are assigned everywhere in V .

The equation set (15)–(21) is valid for any loading cycle of the cycle sequence, but with q and q fixed at

the right values for every such cycle, that is, qðnþ1Þ ¼ qðnÞ þ Drrc
ðnÞ, qðnþ1Þ ¼ qðnÞ þ Dvc

ðnÞ, where n ¼ 1; 2; . . .
denotes the loading cycle sequence and q1; q1 are known, for instance q1 ¼ 0, q1 ¼ 0 everywhere in V . A
structure/loading system can be envisioned, which has the natural capacity to adjust its own initial stress/

hardening state ðq; qÞ such as to report itself towards a steady state, which occurs at that cycle in which

qðnþ1Þ ¼ qðnÞ, qðnþ1Þ ¼ qðnÞ, hence Drrc
ðnÞ ¼ 0 and Dvc

ðnÞ ¼ 0 everywhere in V . Therefore, the problem of de-

termining the steady cycle can be solved by adding, to Eqs. (15)–(21), besides the equilibrium conditions for

q, that is

divq ¼ 0 in V ; q � n ¼ 0 on SD; ð24Þ
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the equations Drrc ¼
R
V Z : Dep ¼ 0 in V and Dvc ¼ vðpþ DnÞ � q ¼ 0 in V , which are satisfied if, and only

if, Dep and Dn comply with the kinematic admissibility conditions:

Dep :¼
Z Dt

0

_eep dt ¼ rsðDurÞ in V ; Dur ¼ 0 on SD; ð25Þ

Dn :¼
Z Dt

0

_nndt ¼ 0 in V ; ð26Þ

where Dur is some displacement field.
The latter result, derived by a simple intuitive reasoning, will be obtained by an alternative argument

grounded on a maximum principle in next section.

The equation set (15)–(21) and (24)–(26), which can be used to determine the steady cycle, can be shown

to admit in general a unique solution for all, except perhaps for q, q (and p) within the elastic volume Ve (if

any), (Polizzotto, 1994a). This equation set takes on the following particular forms in relation to the three

types of steady cycle considered in Section 1, that is:

(1) In (elastic) shakedown, the steady cycle is characterized by _eep � 0; _nn � 0, hence _rrrc � 0; _vvc � 0, and thus
the equation set (15)–(21), (24)–(26) loses meaning, except for the yield condition saving the form

f ðrE þ q; qÞ < 0 in V � ð0;DtÞ.
(2) In alternating plasticity, the steady cycle is characterized by a vanishing plastic strain ratchet, i.e.

Dep ¼ 0, everywhere in V . The governing equation set remains formally unchanged, but Eq. (25) is

to be replaced by the condition: Dep ¼ 0 in V .

(3) In ratchetting, the most general case, the mentioned equation set remains formally unaltered, with Dep

being nonvanishing, at least somewhere in V .

5. Maximum principle for the cycle optimal initial conditions

Let the total intrinsic dissipation energy, D, spent over a generic loading cycle in the transient phase, be

considered, that is

D :¼
Z Dt

0

Z
V

Uð_eep; _nnÞdV dt: ð27Þ

This, by (8) and (15)–(21), can be transformed as in the following:

D ¼
Z Dt

0

Z
V

rE : _eep dV dt þ
Z
V

q : Dep½ � q � Dn�dV þ 1

2

Z
V

Z
V

Dep : Z : Dep dV 0 dV

�
Z
V

WcðDnÞ½ � Wcð0Þ�dV ; ð28Þ

where the identity Dn ¼ Dnc has been used. The integral

1

2

Z
V

Z
V

Dep : Z : Dep dV 0 dV ¼ � 1

2

Z
V

Drrc : D�1 : Drrc dV ð29Þ

is obviously nonpositive. Then, using the solution to Eqs. (15)–(21) with the fields q and q considered
arbitrarily assigned, let the following expression be builded:
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J :¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dt �

Z
V

q : Dep½ � q � Dn�dV : ð30Þ

J turns out to be a nonpositive functional of q and q, say J ¼ J ½q; q�, since in fact, by (23), (28) and (29):

J ½q; q� ¼ �
Z
V

1

2
Drrc : D�1 : Drrc

�
þ WcðDnÞ � Wcð0Þ

�
dV 6 0; ð31Þ

where both Drrc and Dn depend on the fields q and q. It follows that J ½q; q�, being continuous and bounded

from above, must admit a maximum with respect to q and q.

Let the mechanical implications of the maximum condition for J be searched for using for this purpose

the Lagrangian multiplier method. Thus, the Lagrangian functional is written by appending the constraints

(24) to �J ½q; q�, that is

L :¼ �J ½q; q� þ
Z
V
v � divqdV �

Z
ST

v � q � ndS; ð32Þ

where v ¼ vðxÞ is a vector-valued Lagrange multiplier. Since, at the optimum, a variation of q and q is

expected not to produce a variation of _��p and _nn, the first variation of (32) with respect to q and q reads:

dL ¼
Z
V

dq : Dep½ � rsv�dV þ
Z
SD

n � dq � vdS þ
Z
V

dq � DndV : ð33Þ

This shows that dL is identically vanishing for arbitrary variations if, and only if, the kinematic admissi-

bility conditions (25) and (26) are satisfied, with Dur replaced by v. At the optimum, Drrc ¼ 0, Dvc ¼ 0
everywhere in V by (20) and (21), hence Jopt ¼ 0 by (30).

The following statement can thus be phrased:

Statement 3. Among the set of initial self-stresses and static internal variables, fq; qg, those which gene-

rate––through Eqs. (15)–(21)––the steady cycle make J take on a vanishing maximum characterized by

plastic strain and kinematical internal variable cycle increments, Dep and Dn, being kinematically admis-

sible, that is, satisfying (25) and (26). j

6. The steady cycle minimum principle for a cyclically loaded structure

6.1. Formulation

The solid body, or structure, of Section 4 is considered again together with the cyclic loading there es-

tablished, as well as the equation set (15)–(21) and (24)–(26) governing the structure�s steady cycle. This

equation set can be shown to admit a variational formulation based on a minimum principle being a direct

consequence of a time/space integrated form of the minimum net resistant power theorem of Section 3. For

this purpose, let the above equation set be relaxed by disregarding Eqs. (15)–(18), so obtaining a reduced

equation set constituted by Eqs. (19)–(21) and (24)–(26).
Let one introduce the domain K of all sets (_eep; _nn; q; q) satisfying the above reduced equation set, that is

K :¼ _eepðx; tÞ; _nnðx; tÞ; qðxÞ; qðxÞ; x 2 V ; 06 t6Dt :
s:t: constraints ð19Þ–ð21Þ; ð24Þ–ð26Þ

� �
: ð34Þ

Any such set (_eep; _nn; q; q) will be referred to as cyclically admissible solution (CAS) in the following. A generic
CAS is constituted by two parts, that is:
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(i) The kinematic part, i.e. the fields _eepðx; tÞ; _nnðx; tÞ, satisfying the compatibility conditions (25) and (26)––

these fields intervene in the kinematic (Koiter) theorem of shakedown theory to form a kinematically

admissible plastic strain cycle.

(ii) The static part, i.e. the fields qðxÞ, qðxÞ, with q satisfying the self-equilibrium conditions (24)––these
fields intervene in the static (Melan) theorem of shakedown theory to form a statically admissible initial

stress/hardening state.

A generic CAS produces, through Eqs. (19)–(21), total stresses r :¼ rE þ q þ rrc and total static internal

variables, v ¼ qþ vc, which are periodic (both rrc and vc vanish at t ¼ 0 and t ¼ Dt) and plastically ad-

missible. The latter constraint amounts to a coupled restriction upon the kinematic and static parts men-

tioned above.

A CAS having the kinematic part trivially vanishing, i.e. _eep ¼ 0; _nn ¼ 0 in V � ð0;DtÞ, hence producing
total stresses and total static internal variables of the (uncoupled) form r ¼ rE þ q and v ¼ q, respectively,

will be referred to as trivial CAS. Such a trivial CAS does exist in K if, and only if, there exists a static part

ðq; qÞ such that f ðrE þ q; qÞ6 0 in V � ð0;DtÞ, what certainly occurs for all loads not exceeding the

shakedown limit, due to the Melan theorem of shakedown theory. Since in general, in the latter case, the

static part ðq; qÞ is not unique, it follows that, for loads not exceeding the shakedown limit, in general K
contains a continuous set of trivial CASs––but only one at the shakedown limit in conditions of ratchetting

collapse mode (Polizzotto, 1994a).

Then, using a generic CAS––with the related stress and static internal variable increments (20) and (21)––
let the following integral expression be builded, i.e.

Wres :¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� ðrE þ q þ rrcÞ : _eep þ ðqþ vcÞ � _nn
i
dV dtP 0 in K; ð35Þ

which is a time/space integrated form of the net resistant power, wresð_eep; _nnÞ, of Section 3, adjusted to the

present context. Wres turns out to be nonnegative because the square-bracketed integrand itself is so as a

consequence of (6) and (19), or equivalently, of (19) and the minimum net resistant power theorem––the
degenerate case being excluded by (19)––. From the identities:Z

V
q : Dep dV ¼ 0 by Eqs: ð24Þ and ð25Þ ð36Þ

Z
V
q � DndV ¼ 0 by Eq: ð26Þ; ð37Þ

Z Dt

0

Z
V

rrc : _eepdV dt ¼
Z
V

Z
V

1

2
Dep : Z : Dep dV 0 dV ¼ 0 by Eqs: ð20Þ and ð25Þ; ð38Þ

Z Dt

0

Z
V

vc � _nndV dt ¼
Z
V

WcðDnÞ½ � Wcð0Þ�dV ¼ 0 by Eqs: ð21Þ and ð26Þ; ð39Þ

it follows that Wres of (35) simplifies into

Wres ¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dtP 0 in K: ð40Þ

This makes it clear that Wres is a nonnegative functional defined over K and has the meaning of total net

resistant work which, for every CAS, equals the difference between the related total intrinsic dissipation
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energy and the work correspondingly done by the loads. Considering that there exists in K a particular

CAS which together with some _kkðx; tÞ form the solution to the complete equation set (15)–(21), (24)–(26),

and that Wres ¼ 0 for this particular CAS, it can be stated that the functional (40) admits a vanishing

minimum in K and that the minimum solution characterizes the structure�s steady cycle.
The following minimization problem is thus pertinent being considered at this point:

min
K

Wres :¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dt: ð41Þ

Since at the minimum Wres ¼ 0 and thus the nonnegative square-bracketed integrand of (35) must also

vanish, the following identity is satisfied at the optimum:

Uð_eep; _nnÞ ¼ ðrE þ q þ rrcÞ : _eep � ðqþ vcÞ � _nn in V � ð0;DtÞ; ð42Þ

which implies

r :¼ rE þ q þ rrc ¼ oU
o_eep

in V � ð0;DtÞ; ð43Þ

v :¼ qþ vc ¼ � oU

o _nn
in V � ð0;DtÞ: ð44Þ

That is, the optimal pairs ðr; vÞ and ð_eep; _nnÞ turn out to be mutually related by the plasticity constitutive

laws (17)–(19). Therefore, the optimal CAS with some _kkðx; tÞ solve the complete equation set (15)–(21) and

(24)–(26). It seems appropriate to call the above principle ‘‘steady cycle minimum principle’’.

6.2. Study of the optimality equations

This study is required in order to better understand all the mechanical implications of the minimum

problem (41). The Euler–Lagrange equations can be derived by the Lagrange multiplier method. For this

purpose, appending the constraints of (41) to the related objective functional, the Lagrangian functional is

obtained, that is:

LK ¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dt þ

Z Dt

0

Z
V

_llf ðr; vÞdV dt

þ
Z Dt

0

Z
V
_eep :

�
� rrc þ

Z
V
Z : ep dV 0

�
dV dt þ

Z Dt

0

Z
V
_yy � vc

�
� oWcðncÞ

onc

�
dV dt

þ
Z
V
v � divqdV �

Z
ST

v � q � ndS þ
Z
V
h � DndV þ

Z
V
r : rsðDurÞ½ � Dep�dV

�
Z
SD

Dur � r � ndS; ð45Þ

where r and v are defined as in (15) and (16), and _llðx; tÞP 0, _eepðx; tÞ, _yyðx; tÞ, vðxÞ, hðxÞ, rðxÞ are the ap-

propriate Lagrange multipliers (the meaning of which will be discovered later on).
The first variation of (45), after some mathematics (whose details are skipped for brevity), can be written

in the following form:
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dLK ¼
Z Dt

0

Z
V

d_eep :
oU
o_eep

�
� rE � r�

Z
V
Z : ep dV 0

�
dV dtþ

Z
V

dep :

Z
V
Z : ep dV 0 dV

� �Dt

0

þ
Z Dt

0

Z
V

d_llf ðr;vÞdV dtþ
Z Dt

0

Z
V

d _nn � oU

o _nn

�
þ hþ

Z t

0

HðnÞ � _yyd�tt
�
dV dt� dn �

Z t

0

HðnÞ � _yyd�tt
� �Dt

0

þ
Z Dt

0

Z
V

drrc :

�
� _eep þ _ll

of
or

�
dV dtþ

Z Dt

0

Z
V

dvc � _yy

�
þ _ll

of
ov

�
dV dt

þ
Z
V

dq :

�
�rsvþ

Z Dt

0

_ll
of
or

dt
�
dV þ

Z
SD

v � dq � ndS �
Z
V

dðDurÞ � divrdV þ
Z
ST

dðDurÞ � r � ndS

þ
Z Dt

0

Z
V

d_eep :

�
� rrc þ

Z
V
Z : ep dV 0

�
dV dt�

Z
ST

dv � q � ndS þ
Z
V

dh � DndV

þ
Z
V

dr : rsðDurÞ½ �Dep�dV �
Z
SD

Dur � dr � ndS: ð46Þ

Then, in consideration that LK takes on a minimum with respect to the primal variables, but a maximum

with respect to the Lagrange multipliers, the Euler–Lagrange equations (necessary conditions, but also

sufficient due to the problem convexity) associated with (41) include, besides the constraints (19)–(21) and

(24)–(26), the following optimality conditions:

rE þ rþ sc ¼ oU
o_eep

; hþ Xc ¼ � oU

o _nn
in V � ð0;DtÞ; ð47Þ

sc :¼
Z
V
Z : ep dV ; Xc :¼

Z t

0

HðnÞ � _yyd�tt in V � ð0;DtÞ; ð48Þ

_llP 0; _llf ðr; vÞ ¼ 0 in V � ð0;DtÞ; ð49Þ

_eep ¼ _ll
of ðr; vÞ

or
; � _yy ¼ _ll

of ðr; vÞ
on

in V � ð0;DtÞ; ð50Þ

div r ¼ 0 in V ; r � n ¼ 0 on ST; ð51Þ

Dep :¼
Z Dt

0

_eep dt ¼ rsv in V ; v ¼ 0 on SD; ð52Þ

DXc :¼
Z Dt

0

HðnÞ � _yydt ¼ 0 in V ; ð53Þ

where r, v satisfy (15) and (16), i.e. r :¼ rE þ q þ rrc, v :¼ qþ vc. The meaning of the Lagrange multipliers

transpires from the above equations. In particular, one can recognize that s :¼ rþ sc is a residual stress field

with sc associated with the plastic strain rates _eep, the latter giving rise to a strain ratchet field Dep, com-

patible with the displacements v vanishing on SD; also, X :¼ hþ Xc is a static internal variable field with Xc

associated with the kinematic internal variable rate _yy and such that DX ¼ DXc ¼ 0 in V .

By (47) one can write

Uð_eep; _nnÞ ¼ ðrE þ rþ scÞ : _eep � ðhþ XcÞ � _nn in V � ð0;DtÞ: ð54Þ
Thus, on comparing (42) and (54) with each other, it follows that, at the optimum, it is identically: r ¼ q,

h ¼ q, sc ¼ rrc, Xc ¼ vc. Also, from the latter two identities follows that _ssc ¼ _rrrc, _XXc ¼ _vvc, that is, by (15)–
(17), (48) and (50):
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Z
V
Z :

of
or

ð _kk � _llÞdV 0 ¼ 0 in V � ð0;DtÞ; ð55Þ

HðnÞ � of
ov

ð _kk � _llÞ ¼ 0 in V � ð0;DtÞ; ð56Þ

which imply that _kk ¼ _ll, hence _eep ¼ _eep, _yy ¼ _nn, identically.

The findings of here above enable one to state that the Euler–Lagrange equations of problem (41) are

equivalent to the equation set (15)–(21) and (24)–(26) in the sense that the two sets of equations admit the

same solution (which is unique for all, except for q and q within the elastic region Ve � V , see Section 4).

The following statement can thus be phrased:

Statement 4. A steady cycle minimum principle holds for a solid body, or structure, subjected to assigned

cyclic (mechanical and/or kinematical) loads, which states that the structure�s steady cycle makes the total

net resistant work, Wres, take on a vanishing minimum within a suitable domain K of CASs, and that,

conversely, the minimum solution for Wres in K identifies the steady cycle in the structure. j

The nature of the static and kinematic parts intervening to build a generic CAS of K, and in particular

their special role played within the static (Melan) and kinematic (Koiter) shakedown theorems, respectively,

suggest one to interpret the steady cycle minimum principle previously presented as a particular combined
form of the two shakedown theorems, holding for loads in excess to the shakedown limit.

The above steady cycle minimum principle turns out to be an extension, to generalized standard material

models, of that given by Ponter and Chen (2001) for perfect plasticity, as well as of the analogous maximum

principle of Gokhfeld and Cherniavsky (1980)––although the latter authors included, among the set of

constraints of the maximum problem, the redundant conditions _eep ¼ _kkof =or, _kkP 0.

7. Specializations of the steady cycle minimum principle

Two special situations are considered in this section, one of which is the case of loads not exceeding the

shakedown limit, the other is the case of a material element (or specimem) subjected to a given cyclic

uniform stress (or strain).

7.1. Structure under loads not exceeding the shakedown limit

For loads below the shakedown limit, Melan�s theorem of shakedown theory asserts the existence of

initial self-stress and statistical internal variable fields, say q and q, such that f ðrE þ q; qÞ < 0 everywhere in

V and for all t, 06 t6Dt. As previously noted, this implies that, for such loads, K contains trivial CASs,
that is with _eep � 0 and _nn � 0. Anyone of such CASs can be recognized to provide the/an optimal solution

for problem (41), which correspondingly degenerates: namely, the objective functional, as well as the related

constraints, lose meaning, except the constraint (24) remaining unaltered and (19) saving its uncoupled

form f ðrE þ q; qÞ6 0 in V � ð0;DtÞ. In other words, problem (41) collapses into one consisting in the search

for statically and plastically admissible pairs ðq; qÞ, in accord with the Melan shakedown theorem. All this

implies that the structure�s stabilized response is a purely elastic one, as expected.

For loads at the shakedown limit, a trivial CAS like in the previous case exists which again is the/

an optimal solution for problem (41), hence the latter problem degenerates as explained before. How-
ever, the structure being in a shakedown limit state characterized by some impending inadaptation (or
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noninstantaneous) collapse mode, the minimum principle is expected to take on, correspondingly, a par-

ticular limit form, useful to evaluate the incipient inadaptation collapse.

In order to find out the above limit form of the minimum principle, let the elastic stress response rE be

replaced by ð1 þ fÞrE, where f > 0 is a (small) scalar. In this way, the considered load exceeds the
shakedown limit (hence produces a nontrivial elastic–plastic steady cycle in the structure) for any f > 0, but

is at the shakedown limit for f ¼ 0. Then, with the positions:

_eep
0ðx; tÞ :¼

1

f
_eepðx; tÞ; _nn0ðx; tÞ :¼

1

f
_nnðx; tÞ in V � ð0;DtÞ; ð57Þ

and analogously for Dur, Eqs. (19), (25) and (26) transform, respectively, into:

f ð1
	

þ fÞrE þ q þ rrc; qþ vc


6 0 in V � ð0;DtÞ; ð58Þ

De
p
0 :¼

Z Dt

0

_eep
0 dt ¼ rsðDur

0Þ in V ; Dur
0 ¼ 0 on SD; ð59Þ

Dn0 :¼
Z Dt

0

_nn0 dt ¼ 0 in V ; ð60Þ

all of which hold for f > 0.
The reduced equation set in now constituted by Eqs. (20), (21), (24) and (58)–(60), whereas the CAS

domain K of (34) correspondingly takes on the form:

K0 :¼ _eep
0ðx; tÞ; _nn0ðx; tÞ; qðxÞ; qðxÞ; x 2 V ; 06 t6Dt :

s:t: constraints ð20Þ; ð21Þ; ð24Þ; ð58Þ–ð60Þ

� �
: ð61Þ

Accordingly, problem (41) can be rewritten in the following equivalent form:

min
K0

Wresð0Þ :¼
Z Dt

0

Z
V

Uð_eep
0 ;
_nn0Þ

h
� ð1 þ fÞrE : _eep

0

i
dV dt ð62Þ

where, in analogy to (57), Wresð0Þ ¼ Wres=f.

For any f > 0, the latter problem is meaningful and in fact equivalent to (41) written with rE replaced by

ð1 þ fÞrE; however, for f ! 0, whereas the latter problem (41) loses meaning, on the contrary problem (62)

does not. In fact, one can observe: (i) at the limit for f ! 0, the constraints (20) and (21) disappear since no

plastic strains occur at the shakedown limit, that is, _eep ! 0, _nn ! 0, hence rrc ! 0, vc ! 0, and thus (58)

takes on the (uncoupled) limit form

f ðrE þ q; qÞ6 0 in V � ð0;DtÞ; ð63Þ

(ii) since the ratios in (57) remain meaningful even for f ! 0, Eqs. (59) and (60) save their forms also in the

limit for f ! 0; and finally, (iii) the constraint (24) remains unchanged. It follows that the CAS domain K0

of (61) is meaningful also in the limit for f ! 0, but with the constraint (58) replaced by (63). Consequently,

one can recognize that problem (62) decouples into two subproblems, one of which is a minimum problem

of kinematic nature, that is:

min
ð_eep

0
; _nn0Þ

Wresð0Þ :¼
R Dt

0

R
V Uð_eep

0 ;
_nn0Þ � rE : _eep

0

h i
dV dt

s:t: constraints ð59Þ and ð60Þ

9=
;; ð64Þ

whereas the other is a search problem of static nature governed by Eqs. (24) and (63). The latter problem

consists in the search for a statically admissible initial stress/hardening state satisfying (63) and is thus
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recognized to comply with the Melan theorem of shakedown theory (Halphen, 1979; Comi and Corigliano,

1991; Polizzotto et al., 1991).

Problem (64) is formally coincident with the Marcovian principle of shakedown theory (De Saxc�ee, 1995),

but extended to generalized standard materials (Polizzotto et al., 2000). So interpreted, it is valid for any
load level, since in fact one can observe:

• For loads at the shakedown limit, problem (64) admits a vanishing minimum and the related optimal

solution ð_eep
0 ;
_nn0Þ describes the structure�s impending inadaptation collapse mode (or incipient steady

cycle);

• For loads below the shakedown limit, problem (64) admits the trivial solution _eep
0 ¼ 0, _nn0 ¼ 0;

• For loads exceeding the shakedown limit, problem (64) admits no minimum.

These features of problem (64) can be established either by considering it as the limit of problem (61) for

f ! 0, or by studying the related Euler–Lagrange equations, but the details of this issue are skipped for

brevity sake. Problem (64) is therefore equivalent to the Koiter (1960) kinematic theorem of shakedown

theory (Halphen, 1979; Comi and Corigliano, 1991; Polizzotto et al., 1991, 2000).

It can be concluded that the steady cycle minimum principle of Section 6––already qualified as a special

combination of the static and kinematic shakedown theorems holding for loads in excess to the shakedown

limit––decouples into the two distinct shakedown statements for loads not exceeding the shakedown limit.

It is worth noting that problem (64) can be viewed as a particular time/space integrated form of the
minimum net resistant power theorem of Section 3. As such, it solves the problem to find the (incipient)

steady cycle for a structure being subjected to loads not exceeding the shakedown limit.

7.2. Specimen subjected to uniform cyclic stress (or strain)

Let a material element (or specimen) be subjected to a (uniform) cyclic stress, say �rr ¼ �rrðtÞ; 06 t6Dt. In

analogy to a structure subjected to a cyclic load, a steady cycle can be determined for the material element

(Lemaitre and Chaboche, 1990). Eqs. (15)–(21) and (24)–(26) simplify as in the following (no stress equi-

librium, nor strain compatibility must be considered):

_eep ¼ _kk
of
o�rr

; � _nn ¼ _kk
of
ov

in ð0;DtÞ; ð65Þ

_kkP 0; _kkf ¼ 0 in ð0;DtÞ; ð66Þ

f ¼ f ð�rr; qþ vcÞ6 0 in ð0;DtÞ; ð67Þ

vc ¼ vcðncÞ :¼ oWcðncÞ
onc in ð0;DtÞ; ð68Þ

Dn :¼
Z Dt

0

_nndt ¼ 0; ð69Þ

where v ¼ qþ vc, n ¼ pþ nc, q ¼ vðpÞ, hence _nn ¼ _nnc, Dn ¼ Dnc, and moreover WcðncÞ is given by (22). The

(unique) solution to Eqs. (65)–(69) describes the specimen�s steady cycle.

The above equation set admits a variational formulation through a minimum principle which is a par-

ticular case of that of Section 6. In order to show this point, a procedure similar to that adopted in Section

6.1 is used. The above equation set is relaxed by disregarding Eqs. (65) and (66), so obtaining a reduced
equation set, i.e. Eqs. (67)–(69), such that the pertinent CAS domain reads:
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K :¼ f_eepðtÞ; _nnðtÞ; q; 06 t6Dt : s:t: constraints ð67Þ–ð69Þg: ð70Þ
Any CAS produces a total static internal variable, v ¼ qþ vc, periodic like the applied stress (vc ¼ 0 at
t ¼ 0 and t ¼ Dt) and such that the pair (�rr; v) is plastically admissible at all times in the cycle. There cer-

tainly exists in K a particular CAS which, together with some _kkðtÞ, 06 t6Dt, solve the complete equation

set (65)–(69).

Then, let a generic CAS––with the related static internal variable increment (68)––be used to construct

the functional

Wres :¼
Z Dt

0

Uð_eep; _nnÞ
h

� �rr : _eep þ ðqþ vcÞ � _nn
i
dtP 0 in K; ð71Þ

which is a time integrated form of the net resistant power, wresð_eep; _nnÞ, of Section 3, adapted to the present

context. Wres turns out to be nonnegative for whatever CAS due to (6) and (67), or equivalently to (67) and

the minimum net resistant power theorem––the degenerate case being automatically excluded by (67)––.

Because of (68) and (69), and remembering the identities _nn ¼ _nnc and Dn ¼ Dnc, one hasZ Dt

0

ðqþ vcÞ � _nndt ¼ q � Dnc þ WcðDncÞ � Wcð0Þ ¼ 0; ð72Þ

in virtue of which Wres simplifies into

Wres ¼
Z Dt

0

Uð_eep; _nnÞ
h

� �rr : _eep
i
dtP 0 in K: ð73Þ

The latter expression shows that Wres has the meaning of total net resistant work, which equals the difference

between the total intrinsic dissipation energy and the work correspondingly done by the applied load. Since

the steady state solution, that is the solution to (65)–(69), is formed with a particular CAS, and since

Wres ¼ 0 if (73) is computed using this particular CAS, it follows that the functional Wres admits a vanishing

minimum in K, and also that the minimum solution characterizes the steady cycle.

Thus, considering the minimum problem

min
K

Wres :¼
Z Dt

0

Uð_eep; _nnÞ
h

� �rr : _eep
i
dt ð74Þ

and observing that Wres ¼ 0 at the minimum, one has that the nonnegative square-bracketed integrand of

(71) must also vanish, hence

Uð_eep; _nnÞ ¼ �rr : _eep � ðqþ vcÞ � _nn 8t 2 ð0;DtÞ: ð75Þ
It follows that, at the optimum, it is

�rr ¼ oU
o_eep

; qþ vc ¼ � oU

o _nn
8t 2 ð0;DtÞ; ð76Þ

that is, the optimal pairs ð�rr; v :¼ qþ vcÞ and ð_eep; _nnÞ are mutually related by the plasticity laws (65)–(67).

Therefore, the optimal CAS with some _kkðtÞ solve the complete equation set (65)–(69).

Similarly to the general case of Section 6, the mechanical implications of problem (74) can be discovered

by studying the relevant optimality equations through the classical Lagrange multiplier method, but this

point is not further pursued because the procedure to adopt is quite similar to that employed in Section 6.2.

It can be concluded that the steady cycle minimum principle for the specimen under uniform cyclic stress

coincides with that obtainable from the general principle of Section 6 with the appropriate particulariza-

tions, that is, by eliminating the self-stresses q (together with the related equilibrium conditions) and the
strain compatibility equations, as well as the dependence upon the space co-ordinates x.
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In the case of imposed cyclic strain, say �eeðtÞ, on the material element, the steady cycle can be found by a

procedure similar to that presented in this section, but a few changes are needed. In fact, the stress r is now

an additional unknown, whereas the equations r ¼ D : ð�ee � epÞ 8t 2 ð0;DtÞ and Dep ¼ 0 are additional

constraints. Moreover, the total net resistant work has now the expression:

Wres ¼
Z Dt

0

Uð_eep; _nnÞ
h

� �ee : D : _eep
i
dt: ð77Þ

This case is not further pursued here for sake of brevity.

8. Criteria for the ratchet limit loads

For practical design purposes, it is paramount to distinguish the cyclic loads which cause the structure to

exhibit ratchetting in the long-term response (with consequent plastic strain growth) from those under

which the ratchetting phenomenon is escaped (and thus the structure can only experience either alternating

plasticity, or shakedown for lower load values). The steady cycle minimum principle of Section 6 can be

utilized to derive a criterion for recognizing whether a given cyclic load exceeds, or not, the ratchet limit,

that is, whether it produces, or not, ratchetting in the long-term response. This task is addressed in the

present section, first for general loads, then for loads not exceeding the shakedown limit.

8.1. General

Let the compatibility constraint (25), concurring to qualify the CASs of K in (34), be replaced by the
more stringent one stating that the plastic strain ratchet is identically vanishing, that is

Dep :¼
Z Dt

0

_eep dt ¼ 0 in V : ð78Þ

A subdomain of no-ratchet CASs, say fKK � K, is obtained by restricting the kinematic parts ð_eep; _nnÞ to those

obeying (78), that is:

fKK :¼ _eepðx; tÞ; _nnðx; tÞ; qðxÞ; qðxÞ; x 2 V ; 06 t6Dt :
s:t: constraint ð19Þ–ð21Þ; ð24Þ; ð26Þ; ð78Þ

� �
: ð79Þ

Then, using a generic CAS of (79), a functional Wres, formally equal to that of (35) and (41), can be gene-
rated, that is

Wres :¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dt in fKK: ð80Þ

Obviously, this Wres ¼ Wres½_eep; _nn; q; q� turns out to be nonnegative for all no-ratchet CAS. It can be easily

recognized that, if the given load does not exceed the ratchet limit, there actually exists a particular CAS infKK for which Wres ¼ 0, and that, if on the contrary the given load does exceed the ratchet limit, necessarily

Wres > 0 for all CASs in fKK. The following statement can thus be given:

Statement 5. For a cyclically loaded structure, a criterion for ratchet limit loads holds, which states that a

given load does not exceed the ratchet limit if there exists a no-ratchet CAS for which the (nonnegative)

total net resistant work, Wres, is vanishing, whereas the given load does exceed the ratchet limit if Wres > 0
for every no-ratchet CAS. j
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The above criterion can be set in an alternative more stringent form by invoking the following minimum

problem, analogous to (41):

mineKK Wres :¼
Z Dt

0

Z
V

Uð_eep; _nnÞ
h

� rE : _eep
i
dV dt: ð81Þ

This problem certainly admits a minimum, the value of which is zero if, and only if, the given load does not

exceed the ratchet limit, but positive in the contrary case. The following can thus be stated:

Statement 6. For a cyclically loaded structure, a (stringent) criterion for ratchet limit loads holds, which

states that a given load does not exceed the ratchet limit if, and only if, minWres in fKK is zero, whereas the

given load does exceed the ratchet limit if minWres in fKK is positive. j

Note that, if fKK contains a trivial CAS, that is one of the type ð_eep � 0; _nn � 0; q; qÞ for which Wres ¼ 0,

hence minWres in fKK is zero, then the given cyclic load does not exceed the shakedown limit, what is in

accord with the Melan theorem of shakedown theory.

Also note that the Lagrangian functional associated with (81)––not reported here for brevity––can be

easily shown to be like (45), but without all integral terms containing Dur, and thus in the present case Eq.

(51) does not hold (i.e. r is not necessarily a self-stress). However, provided that the minimum of (81) is

vanishing, Eq. (54) and all subsequent arguments do hold also in the present case, till the conclusion that

r ¼ q, h ¼ q, sc ¼ rrc, Xc ¼ vc, hence _eep ¼ _eep, _yy ¼ _nn, all identically.

8.2. Loads not exceeding the shakedown limit

For loads not exceeding the shakedown limit, an appropriate form of the ratchetting limit load criterion

can be devised making use of a suitable limit form of (79) and (81). This limit form can be obtained by a

procedure like that employed in Section 7.1 to derive (64) from (34) and (41). The result of this procedure

coincides with that previously obtained in Section 7.1, but problem (64) is to be replaced by the following:

min
ð_eep

0
; _nn0Þ

Wresð0Þ :¼
R Dt

0

R
V Uð_eep

0 ;
_nn0Þ � rE : _eep

0

h i
dV dt

s:t: De
p
0 ¼ 0; Dn0 ¼ 0 in V

9=
;; ð82Þ

where the constraints (60) and (78) have been reported in abridged form.

Then, remembering the features of problem (64), the following can be stated:

Statement 7. For a structure subjected to cyclic loads not exceeding the shakedown limit, a (stringent)

criterion for ratchet limit loads holds: it states that a given load does not exceed the ratchet limit (hence is

either a shakedown load, or one at the alternating plasticity limit) if, and only if, problem (82) has a

vanishing minimum, whereas it is at the ratchet limit if problem (82) has a positive minimum. Otherwise, if
problem (82) has no minimum––this is the case when there exists some ð_eep

0 ;
_nn0Þ such that Wresð0Þ < 0––, then

the given load exceeds the shakedown limit. j

The above criterion recalls an analogous criterion given by K€oonig (1979) for loads at the alternating

plasticity limit.

9. The ratchet limit load problem

The evaluation of the ratchet limit loads is an important research issue for design purposes because in
many instances structures, or parts of them, are proportioned against ratchetting collapse modes, while
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alternating plastic strains are tolerated––but with due care for their effects on the structure�s working life

length.

9.1. Preliminary arguments and review of known results

For the present purposes, it is useful to mention (Polizzotto, 1993a, 1994a,b) that any cyclic load, say

P ðtÞ, which exceeds the ratchet limit, can always be transformed into one not exceeding this limit by simply

superposing to it a permanent (mechanical) load, say P 0. This means that the combined load P 0 [ P ðtÞ (with

P 0 suitably chosen) will induce either alternating plasticity for higher values of the cyclic load, or shake-

down for lower values of the same load. The cyclic load value that separates the latter two types of steady

state response from each other is the so-called alternating plasticity (or plastic shakedown) limit, (Polizzotto,

1993c).
The superposed load P 0 can in principle be constituted by arbitrarily distributed body forces in V and

surface forces on ST. However, often the loading program consists of combined loads of the type

aP
0 [ bPðtÞ, where P

0
and PðtÞ are specified reference loads and a; b are scalar multipliers. In the latter case,

there is an obvious convenience in choosing the superposed load within the family aP
0
.

Fig. 1 is a schematic representation of the so-called interaction (or Bree-like) diagram in the ða; bÞ-plane.

In this, the region (say B) collecting all loads not exceeding the plastic collapse limit, can be divided into

zones, i.e. B ¼ BS [ BF [ BR, where BS collects the shakedown loads (including those below the elastic

limit), BF the alternating plasticity loads, and BR the ratchetting loads, see e.g. Gokhfeld and Cherniavsky
(1980), Ponter (1983), Polizzotto (1993a,b, 1994a,b). The line b ¼ bal (b–d in Fig. 1) corresponds to the

alternating plasticity limit. The zone BNR :¼ BS [ BF (dashed in Fig. 1) is the no ratchetting zone, whereas its

boundary line (a� b� c� d � e in Fig. 1) collects the loads at the ratchet limit. Any load in the BR zone, as

P1 and P2 in Fig. 1, can be transformed, by superposition of a suitable permanent load aP
0
, into one be-

longing to BNR, i.e. to BS for b < bal, or to BF for b > bal.

As known from the literature (Polizzotto, 1993a, 1994a,b), a structure which finds itself in a condition of

alternating plasticity under a cyclic load P ðtÞ, experiences alternating plastic strains only within a part of its

Fig. 1. Geometrical sketch of a typical Bree-like interaction diagram for a two-parameter cyclic/steady load, aP
0 [ bPðtÞ; 06 t6Dt:

BS ! shakedown zone, BF ! alternating plasticity zone, BR ! ratchetting zone, BNR ¼ BS [ BF ! no ratchetting zone (dashed area),

bal ! alternating plasticity limit.
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volume, say Vp � V , whereas in the complementary region Ve no plastic strains occur in the steady state.

Additionally, this alternating plasticity condition turns out to be insensitive to the application of superposed

permanent loads P 0 ¼ aP
0

upon Ve, in the sense that the combined load aP
0 [ P ðtÞ does promote the same

steady-state strain cycle, provided a is within some no ratchetting range, say a� < a < aþ, where the limits
a� and aþ mark the no ratchetting zone boundary and are referred to as the ratchet limits after Ponter and

Chen (2001).

For cyclic loads P ðtÞ ¼ bPðtÞ such that b < bal (e.g. P1 in Fig. 1), the determination of aþ and a� can be

accomplished by solving a classical shakedown limit load problem. For instance, for aþ one has:

aþ ¼ max
a;s

a s:t:
f ðrE þ s; qÞ6 0 in V � ð0;DtÞ
Equilibrium conds: on s with aP

0
:

�
ð83Þ

In fact, this problem (as well as the analogous one, a� ¼ min a under the same constraints) solves the

problem of what permanent load must be superposed to P ðtÞ such that the combined load is a shakedown

limit load.

For cyclic loads P ðtÞ ¼ bP ðtÞ with b > bal, a procedure to evaluate the ratchet limits aþ and a� is pre-
sented in the next subsection.

9.2. Procedure to evaluate the ratchet limits

This procedure is based on two ingredients, that is, the (stringent) ratchet limit load criterion (Statement

6) and the insensitivity features of the alternating plasticity state mentioned previously.

Let P ðtÞ be an alternating plasticity cyclic load, to be used to generate the alternating plasticity strain
cycle associated with the load family PðtÞ [ aP

0
, a� < a < aþ, of which the considered P ðtÞ is, by definition,

the master load. The ratchet limit load criterion of Statement 6 asserts that the minimum problem (81),

solved for the load in question, gives

mineKK Wres _eep; _nn; q; q
h i

! 0 ð84Þ

with a nontrivial optimal CAS, say ð_eep
; _nn
; q
; q
Þ 2 fKK. The latter CAS turns out to be unique for the

alternating plastic strain rates _eep
 and the related kinematic internal variable rates _nn
, together with the

region Vp � V where they take place, as well as for the self-stress, q
, and static internal variables, q
, but

these q
 and q
 being however indeterminate within the elastic region Ve ¼ V n Vp (where no plastic strains

occur in the steady state). Obviously, the above (starred) CAS complies with all the constraints qualifying

the CASs of fKK in (79), i.e. the constraints (19)–(21), (24), (26) and (78), as long with the optimality

conditions (15)–(18). In particular, it is:

f ðrE þ q
 þ rrc
; q
 þ vc
Þ6 0 in V � ð0;DtÞ; ð85Þ

where the equality sign holds (i.e. the yield limit is actually attained) for at least two times everywhere in Vp,

but nowhere in Ve.

By the insensitivity features of the alternating plasticity state––the latter being described by the starred

CAS previously obtained––, permanent loads as P 0 ¼ aP
0

can be superposed upon the (nonempty) elastic

region Ve of the body without causing a change in the steady cycle, except for some stress increments, say

s ¼ sðxÞ, appearing within Ve such as to equilibrate the load aP
0

there superposed (Ponter and Karadenitz,

1985; Polizzotto, 1993a, 1994a,b). The set of a values for which the above insensitivity features persist fill

the no ratchetting range, a�
6 a6 aþ, and thus the ratchet limits identify with the extremes of this interval.

So, with the positions:
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r
 :¼ rE þ q
 þ rrc
; v
 :¼ q
 þ vc
 in V � ð0;DtÞ; ð86Þ

one can write, for example for aþ:

aþ ¼ max
a;s

a s:t:
f ðr
 þ s; v
Þ6 0 in V � ð0;DtÞ
Equilibrium conditions on s with aP

0

�
ð87Þ

and analogously for a� ¼ min a under the same constraints.

Note that, due to (85), nonzero values of s are allowed only within the elastic region Ve, where the

permanent load is applied, hence s ¼ 0 in Vp. Problem (87) has the form of a classical shakedown limit load

problem and it in fact is similar to (83). However, in (83) the elastic stress response, rE, to the given cyclic

load operates and the yield condition is enforced with respect to some subsequent yield surface at a fixed

hardening state, q; whereas in (87) the stress r
 and the static internal variable q
 derived from (84) (with q


and q
 suitably continued in Ve) intervene and the yield condition is enforced with respect to an accordingly

varying subsequent yield surface.
Problem (87) is the extension to the present context of the analogous problem formulated by Ponter and

Chen (2001) for perfect plasticity; here in addition the conceptual background on which the problem

formulation is rooted has been provided. Ponter and Karadenitz (1985) proposed approximate procedures

to evaluate the (starred) alternating plasticity response needed in (87) for the perfect plasticity case; these

procedures were improved (and rendered exact for one-dimensional structures) by Polizzotto (1993a,

1994a,b).

Since in (87) s ¼ 0 in Vp and thus the inequality constraint can there be enforced only in Ve (where aP
0

is

applied, hence s cannot vanish), follows that problem (87) can be interpreted as a classical shakedown limit
load problem for the portion Ve of the body, which is left after removal of Vp. This interpretation was named

partial shakedown by Ponter and Karadenitz (1985) and investigated by Polizzotto (1993a, 1994a,b).

9.3. The alternating plasticity master load

An aspect of this theory not pointed out by Ponter and Chen (2001) is that, for the applicability of the

procedure of the preceding subsection, the considered cyclic load P ðtÞ is required to be an alternating

plasticity load. Often in practice the given cyclic load is one of this sort, especially when it is a kinematic
load (e.g. thermal load), and anyway the criteria of Section 8 can be used to recognize whether this is true.

The question posed here is: how an alternating plasticity load, to be used as a master load in the ratchet

limit analysis, can be derived from a given P ðtÞ exceeding this limit? Again, the ratchet limit load criterion of

Statement 6 together with the insensitivity features of the alternating plasticity state can be usefully em-

ployed for this purpose.

Let P ðtÞ ¼ bP ðtÞ, b > bal, be the given cyclic load, by hypothesis exceeding the ratchet limit. According to

the criterion of Statement 6, the minimum problem (81), solved for the load in question, gives a positive

optimal value of the objective functional.
A permanent load in the family aP

0
can always be found such that the combined load, PðtÞ [ aP

0
, does

not exceed the ratchet limit. The latter condition can be enforced by the same criterion mentioned above,

provided that the CAS domain (79) is suitably widened by replacing inequality (19) with the following one:

f ðrE þ a�rr0 þ q þ rrc; qþ vcÞ6 0 in V � ð0;DtÞ ð88Þ

where a�rr0 is the elastic stress response to aP
0
. For every fixed value of a, a no-ratchet CAS domain, say fKKa,

is generated, i.e.

fKKa :¼ _eepðx; tÞ; _nnðx; tÞ; qðxÞ; qðxÞ; x 2 V ; 06 t6DtÞ :
s:t: constraints ð20Þ; ð21Þ; ð24Þ; ð26Þ; ð78Þ; ð88Þ

� �
: ð89Þ
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It follows that any fixed a value such that

mineKKa

Wres _��p; _nn; q; q
h i

! 0 ð90Þ

can be utilized to obtain the needed master load as the load P ðtÞ [ aP
0
.

Note that one can write, formally:

aþ ¼ max a
a� ¼ min a

�
s:t: mineKKa

Wres _eep; _nn; q; q
h i

! 0: ð91Þ

The maximum operation in (87), as well as the associated minimum one, are analytical implementations

of the analogous operations in (91), respectively.

10. Comments and conclusion

For a solid (or structure) composed of generalized standard material (that is, elastic–plastic material with

internal variables and convex hardening potential) exhibiting hardening saturation capability, and sub-

jected to cyclic loads, the equation set governing the long-term stabilized (or steady state) response has been

discussed together with the related uniqueness features. This response has been regarded as that of a

structural system subjected to a given loading cycle and being in an appropriate initial stress and hardening

state. The well-known fact that this initial stress/hardening state coincides with that for which the cycle

increment of plastic strains (plastic strain ratchet) is self-compatible and the analogous increment of ki-
nematic internal variables is identically vanishing, has been here rediscovered through a maximum principle

which discerns, between the set of all possible initial conditions, those for which the maximum is attained.

A minimum principle given by Ponter and Chen (2001), capable to characterize the steady state response

(or steady cycle) of an elastic perfectly plastic structure, has been here extended to cope with generalized

standard materials so obtaining a variational tool to solve the above equation set.

A wider insight into this steady cycle minimum principle has been here achieved by a discussion of the

related Euler–Lagrange equations using the classical Lagrange multiplier method; by this way, the effective

capability of the minimum principle to solve the steady cycle problem has been assessed. The physical
content of the minimum principle has been made clearer through the recognition that the quantity to

minimize has the meaning of total net resistant work (equal to the difference between the total intrinsic

dissipation energy and the work correspondingly done by the applied load), which is offered by the

structure in an imposed CAS. The latter solution is constituted by kinematic and static parts known to play

specific roles in the kinematic and static shakedown theorems, respectively; the minimum operation is to be

achieved within the domain of all such solutions. Additionally, the minimum principle has been recognized

to be a time/space integrated form of the so-called minimum net resistant power theorem––here established––

which is dual of the maximum intrinsic dissipation theorem of plasticity theory and provides the plastic
flow mechanism (if any) corresponding to an assigned stress/hardening state of the material.

The above minimum principle has been also discussed for the particular case of loads not exceeding the

shakedown limit. With a procedure that seems more rigorous than that used by Ponter and Chen (2001), it

has been shown that in the considered case the minimum principle decouples into two pieces, one of which

is a static-type search problem conforming to the Melan theorem of shakedown theory, the other is a

Markovian kinematic minimum principle for the incipient collapse mode, equivalent to the Koiter theorem

of shakedown theory. This circumstance, together with the nature of the constituent kinematic and static

parts of a generic CAS, made it possible to interpret the steady cycle minimum principle as a special
combined form of either static and kinematic shakedown theorems, valid for loads in excess to the
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shakedown limit, but which for loads not exceeding this limit decouples into the two separate shakedown

statements. This result widens that given by Ponter and Chen (2001), who interpreted the steady cycle

minimum principle as just an extension of the upper bound shakedown theorem to loads in excess to the

shakedown limit.
Another particular case to which the steady cycle minimum principle has been applied is that of a

material element (or specimen) subjected to a given cyclic uniform stress (or strain). The simpler form taken

on by this minimum principle, characterized by the disappearance of the space co-ordinates, has been found

by means of a direct study of the problem in order to better clarify the physical and mathematical content

of it.

Using the steady cycle minimum principle, criteria for the assessment of the ratchet limit loads have been

formulated. These criteria are useful to discern loads below the ratchet limit (which thus produce either

alternating plasticity, or shakedown) from loads exceeding this limit (hence producing ratchetting).
A technically relevant aspect of the entire theory is the possibility there offered to determine, for a given

structure, cyclic loads at the ratchet limit and, in particular in the case of a two-parameter family of cyclic/

steady loads, the border line separating, in the Bree-like diagram, the ratchetting zone from the no

ratchetting one. The procedure to evaluate the ratchet limit loads was explained by Ponter and Chen (2001)

and Chen and Ponter (2001) for perfect plasticity. Here, the same procedure has been reproposed for

generalized standard materials, and additionally a deeper insight on the conditions upon which this pro-

cedure grounds has been provided.

Essentially, this procedure exploits the insensitivity features of the structure being in an alternating
plasticity condition with respect to permanent (mechanical) loads applied upon the (nonempty) elastic

region Ve, which in fact leave unaltered the existing steady cycle in all, except for a stress increment in Ve

equilibrating the applied load (Polizzotto, 1993a, 1994a,b). Thus, the procedure needs some cyclic load not

exceeding the ratchet limit to be used as a master load for generating the relevant alternating plasticity

steady cycle, and determines the maximum permanent load amplitude for which these insensitivity features

persist. Therefore, like in Ponter and Chen (2001), the procedure consists in two steps:

(i) Using the steady cycle minimum principle with a master load, determine the relevant alternating plas-
ticity steady cycle. This master load can be chosen coincident with the given cyclic load if the latter is

known (or recognized by the appropriate criteria) not to exceed the ratchet limit, but can be properly

obtained (in ways that have been here suggested) from the given cyclic load if the latter exceeds the

ratchet limit.

(ii) Determine the maximum amplitude of the permanent load that can be applied upon Ve in the body be-

ing in the same alternating plasticity state previously evaluated.

An aspect of this two-step procedure, here pointed out, is its unified character for cyclic loads of different
amplitude, that is: below the alternating plasticity limit, in which case the master load taken alone is a

shakedown load, whereas, taken in combination with the permanent load of maximum amplitude, forms a

shakedown limit load; above the alternating plasticity limit, in which case the body Ve � V considered

isolated from the rest of the body finds itself in a condition of shakedown, Ponter and Karadenitz (1985),

Polizzotto (1993a, 1994b).

The contribution given in this paper mainly consists in an extension and a generalization of previous

results due to Gokhfeld and Cherniavsky (1980) and to Ponter and Chen (2001) in the domain of perfect

plasticity. But it––the author believes––also provides a deeper insight into the inherent theory and contains
original additions and nonsecondary improvements like, among other: a maximum principle here devised

to characterize the optimal initial stress/hardening state in the steady cycle, a clearer relationship between

the governing equation set and the steady cycle minimum principle, the very mechanical roots of the latter

principle in the material behavior through the here envisioned minimum net resistant power theorem, the
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assessment of the mechanical implications of the steady cycle minimum principle through the study of the

related Euler–Lagrange equations, a more rigorous passage to the limit for the steady cycle minimum

principle in the presence of loads at the shakedown limit, the formulation of criteria for the ratchet limit

loads, the assessment of ground motivations for the two-step procedure for the ratchet limit analysis.
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Appendix A. Notation

A compact notation is used, with bold-face letters for vectors and tensors. The dot and colon products

between vectors and tensors denote the simple and double index contraction operations, respectively. For

instance, considering the vectors u ¼ fuig, v ¼ fvig, n ¼ fnig and the tensors r ¼ frijg, e ¼ feijg and

D ¼ fDijhkg, one can write: u � v ¼ uivi, r : e ¼ rijeji, n � r ¼ fnjrjig, D : e ¼ fDijhkekhg, where the subscripts

denote Cartesian components and the repeated index summation rule is applied. Cartesian orthogonal co-

ordinates x ¼ ðx1; x2; x3Þ are employed. The symbol rs denotes the symmetric part of the gradient operator,
i.e. rsu ¼ ½ruþ ðruÞT�=2. The symbol :¼ means equality by definition. The right hand side of

min F ð�Þ :¼ ½. . .� specifies the objective function/functional F ð�Þ, the optimal value of which, F 
, is denoted a

F 
 ¼ min F ð�Þ, or min F ð�Þ ! F 
. Other symbols are defined in the text at the place of their first appearance.
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